
New Memtrace Features:
Instruction Encodings

&
Fast Seeking

How To Obtain Instruction Encodings

● Old way: mmap binary and decode from there
○ Requires the binaries and address mappings (modules.log file)

● New way: encoding bytes embedded in each instruction record
○ No need for binaries anymore

Modified Code Support

● New field indicates whether the encoding has changed so a tool can
invalidate cached decoding information

○ Although modified code does not happen for existing shared workloads

New Instruction Record Fields

/**
 * The instruction's raw encoding. This field is only valid when the the file type
 * (see #TRACE_MARKER_TYPE_FILETYPE) has #OFFLINE_FILE_TYPE_ENCODINGS set.
 * DynamoRIO's decode_from_copy() (or any other decoding library) can be used to
 * decode into a higher-level instruction representation.
 */
unsigned char encoding[MAX_ENCODING_LENGTH];
/**
 * Indicates whether the encoding field is the first instance of its kind for this
 * address. This can be used to determine when to invalidate cached decoding
 * information. This field may be set to true on internal file divisions and
 * not only when application code actually changed.
 */
bool encoding_is_new;

Example Traces

● Samples at https://github.com/DynamoRIO/drmemtrace_samples have been
updated and can serve as test traces of the new fields

Example Code
 if (TEST(OFFLINE_FILE_TYPE_ENCODINGS, shard->filetype) && memref.instr.encoding_is_new) {
 // The code may have changed: invalidate the cache.
 shard->worker->decode_cache.erase(memref.instr.addr);
 }
 if (shard->worker->decode_cache.find(memref.instr.addr) == shard->worker->decode_cache.end()) {
 if (TEST(OFFLINE_FILE_TYPE_ENCODINGS, shard->filetype)) {
 // The trace has instruction encodings inside it.
 decode_pc = memref.instr.encoding;
 } else {
 // Legacy trace support where we need the binaries.
 std::lock_guard<std::mutex> guard(mapper_mutex_);
 decode_pc = module_mapper_->find_mapped_trace_address(memref.instr.addr);
 if (!module_mapper_->get_last_error().empty()) return false;
 }
 // Now decode from `decode_pc` and populate the cache.
 }

Fast Seeking

● Each software thread file is split into chunks of a fixed instruction count (say,
10 million instructions) with the chunks compressed separately and stored
together as a .zip file

● Fast seeking is implemented by jumping to the nearest chunk and proceeding
linearly from there

● Once-only information like instruction encodings are duplicated in each chunk
(hidden by reader iterator)

● The underlying file change from .gz to .zip will not cause any disruption when
using the provided reader library

